Reg. No. :

Question Paper Code : X 67589

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Seventh Semester Electrical and Electronics Engineering EE 1401 – POWER SYSTEM OPERATION AND CONTROL (Regulations 2008)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

(6)

- 1. What is meant by transfer of power between active sources ?
- 2. What are the composite regulating characteristics of power systems ?
- 3. List out various needs for frequency regulation in power system.
- 4. What is "AGC" ?
- 5. State the various types of excitation systems.
- 6. What is the role of exciter in voltage control ?
- 7. Define "Load duration curve".
- 8. What is unit commitment problem ?
- 9. Briefly explain the various components of SCADA.
- 10. What are the advantages of dynamic programming method ?

- 11. a) i) Explain the structure of modern power system in detail. (10)
 - ii) Discuss the generator response to a load change in power system operation.

(OR)

b) Two generators rated 400 MW and 700 MW are operating in parallel. The droop characteristics of their governors are 3% and 4% respectively from no-load to full-load. Assuming that the governors are operating at 50 Hz at no load, how would a load of 1000 MW be shared between them ? What will be the system frequency at this load ? Determine the full load speed for each machine. (16)

X 67589

12.	a)	i) A single area consists of two generating units rated at 400 and 800 MVA with speed regulation of 4% and 5% on their respective ratings. The units are operating in parallel sharing 700 MW. Unit – 1 supplies 200 MW and Unit – 2 supplies 500 MW at 1.0 per unit, 50 Hz frequency. The load is increased by	2
		 130 MW. 1) Assuming there is no frequency dependent load i.e. D = 0, find the steady state frequency deviation and the new generation on each unit. 2) The load varies 0.8% for every 1% change in frequency i.e. D = 0.8. Find the 	(10)
		steady state frequency deviation and the new generation on each unit.ii) Write a detailed technical note on the performance of AGC under normal and abnormal conditions.	(6)
		(OR)	
	b)	i) A 50 Hz generator of reactance 0.8 pu is connected to an infinite bus through a line of 0.4 pu reactance. $E = 1.05$ pu, $V = 1.0$ pu. The inertia constant is 4 MJ/MVA. The generator is loaded to 70% of the maximum power limit. Determine the frequency of natural oscillations. Derive the expressions used.	(10)
		ii) Explain in brief about the importance of frequency control.	(6)
13.	a)	i) Develop a typical excitation arrangement to control the voltage of an alternator and explain.	(9)
		ii) Briefly explain the role of tap changing transformer in voltage control. (OR)	(7)
	b)	What is static VAR compensator ? Where it is used ? Explain its operation and state the merits of static VAR compensator over other methods of voltage control.	(16)
14.	a)	Define Unit commitment problem. What are its constraints ? Explain its solution by dynamic programming.	(16)
	b)	 i) Describe the solution of coordination equations by Lambda – iteration method. 	(8)
		ii) Define base point and participation factors. Explain them.	(8)
15.	a)	Discuss the various operating states and the control strategies of a power system.	(16)
		(OR)	
	b)	What is SCADA ? Discuss it in detail.	(16)